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Abstract
We derive new tests for proper calibration of multivariate density forecasts based on Rosenblatt probability in-

tegral transforms. These tests have the advantage that they i) do not depend on the ordering of variables in the
forecasting model, ii) are applicable to densities of arbitrary dimensions, and iii) have superior power relative to ex-
isting approaches. We furthermore develop adjusted tests that allow for estimated parameters and, consequently, can
be used as in-sample specification tests. We demonstrate the problems of existing tests and how our new approaches
can overcome those using Monte Carlo Simulation as well as two applications based on multivariate GARCH-based
models for stock market returns and on a macroeconomic Bayesian vectorautoregressive model.

Motivation
•Only few existing tests for proper forecast calibration in multivariate setup:

– Most based on multivariate version of probability integral transforms (PITs).
• Existing tests suffer from two main shortcomings:

– Most tests available only for d ≤ 2 or d ≤ 3.
– Sensitive to the ordering of variables⇒ “Prone to cheating”.
• Issue of dependence of test statistic on ordering of variables not addressed in literature.

Research Questions
•How can we design order invariant tests of whether a multivariate predictive density coincides with

the true (conditional) density function that are order invariant, i.e., how can we design test which
do not depend on the ordering of variables in the forecast model?
•Which tests for proper calibration of density forecasts perform best in large dimensional settings?

Main Contributions
•We generalize existing tests for proper calibration of multivariate density forecasts to arbitrary di-

mensional problems.
•We derive new tests which are order invariant in general.
•We present a formal accounting of conditions under which different tests are order invariant.
•We develop adjusted versions of our tests that account for estimation uncertainty.
•We analyze size and power (against various deviations from the null hypothesis) of different tests

in a Monte Carlo study.
•We present two applications (forecasting financial returns/macroeconomic variables) that demon-

strates the usefulness of our new tests.

Theory
Background
Basic question: Does estimated/forecast distribution F̂t coincide with the true distribution Ft?

One important condition is proper calibration:

– Statistical consistency between F̂t and the realized observations yt for t = 1, . . . , n

In the univariate case, if F̂t = Ft, then so-called probability integral transforms (PITs) are uniformly
distributed:

Ut =

∫ Yt

−∞
f̂t(y)dy = F̂t(Yt) ∼ U(0, 1)

Test uniformity of {Ut}nt=1 with Kolmogorov-Smirnov (KS) or Neyman smooth test (NST).

Problem in the multivariate case: distribution of Ut under H0 is unknown.

Solution is based on the Rosenblatt transformation:

U1
t = F̂Y1(Y1,t), U

2|1
t = F̂Y2|Y1(Y2,t), . . . , U

d|d−1,...,1
t = F̂Yd|Yd−1,...,Y1(Yd,t)

All terms are U(0, 1) and independent of each other.

Existing Tests
General idea: Transform multivariate problem into a univariate one, i.e., aggregate the d components
into a single one with known distribution.

•Diebold et al. (1999), stack all PITs (S): St = [U
d|d−1,...,1
t , . . . , U1

t ]′

• Clements and Smith (2000, 2002), multiply all PITs (P ): Pt,d = g(Yt) =
∏d
i=1U

i|1:i−1
t

•Ko and Park (2013), multiply location adjusted PITs (P ∗): P ∗t,d = g(Yt) =
∏d
i=1(U

i|1:i−1
t − 0.5)

Order Invariance
There are d! permutations possible (denoted by πk for k = 1, . . . , d!).
Definition 1. Let T (πk) be a test statistic based on {Yt}nt=1 under permutation πk. We call a test
statistic T (πk) order invariant if T (πk) = T (πj), ∀ k 6= j.

New Tests
Alternative transformation I: Z2

t =
∑d
i=1

(
Φ−1

(
U
i|1:i−1
t

))2

H0 implies that Z2
t,d ∼ χ2

d ⇒ Test uniformity of UZ
2

t = Fχ2
d
(Z2
t ). (In Gaussian setting equal to

transformation proposed by Ishida (2005).)

Alternative transformation II: Z2
t
∗

=
∑d
i=1

∑2d−1

k=1

(
Φ−1

(
U
i|γki
t

))2

This is the sum of squares of all distinct “inverse PITs” for all possible permutations. In general,
terms are not independent of each other→ no χ2 distribution under H0. Instead, distribution follows
a mixture of χ2 distributions.

Alternative transformation III: Z2
t
†

=
∑d
i=1

(
Φ−1

(
U
i|−i
t

))2

Similar to Z2
t
∗ but considers only the terms which are conditional on all but one variable, i. e.,

U t
i|{1,...,d}\i. Distribution follows directly from distribution of Z2

t
∗.

S P P ∗ Z2 Z2∗ Z2†

Reference DHT (1999) CS (2000) KP (2013)
Order invariant?

Independence X X X X X X
Gaussianity X X X
In general X X

Feasible for large d? X X X X X

Results
Monte Carlo Simulations
•Order-dependence can cause huge size-distortions if researcher wants to “cheat”
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•New tests perform equally well or better than existing tests against various alternatives and for all
dimensions.

Macroeconomic BVAR
• TVP-BVAR by Primiceri (2005) for unemployment rate, inflation, and short-term interest rate.
•Non-parametric methods for computing PITs/alternative: approximation by Normal distribution.

1-step-ahead
non-parametric densities

S P P ∗ Z2 Z2∗ Z2†

1-2-3 0.374 0.667 0.022 0.006 0.230 0.276
1-3-2 0.552 0.216 0.769 0.158
2-1-3 0.402 0.644 0.005 0.004
2-3-1 0.385 0.184 0.055 0.083
3-1-2 0.366 0.314 0.366 0.112
3-2-1 0.484 0.556 0.271 0.164

Normal approximation

S P P ∗ Z2 Z2∗ Z2†

1-2-3 0.032 0.110 0.058 0.001 0.001 0.000
1-3-2 0.027 0.116 0.154
2-1-3 0.032 0.125 0.021
2-3-1 0.007 0.150 0.005
3-1-2 0.005 0.166 0.009
3-2-1 0.009 0.149 0.008

4-step forecasts
non-parametric densities

S P P ∗ Z2 Z2∗ Z2†

1-2-3 0.052 0.042 0.208 0.034 0.063 0.223
1-3-2 0.051 0.038 0.194 0.088
2-1-3 0.010 0.067 0.024 0.022
2-3-1 0.020 0.007 0.000 0.007
3-1-2 0.122 0.004 0.755 0.039
3-2-1 0.032 0.008 0.240 0.129

Normal approximation

S P P ∗ Z2 Z2∗ Z2†

1-2-3 0.020 0.004 0.595 0.000 0.000 0.002
1-3-2 0.057 0.142 0.267
2-1-3 0.028 0.008 0.605
2-3-1 0.086 0.144 0.238
3-1-2 0.122 0.007 0.097
3-2-1 0.099 0.004 0.305

Extensions
•Autocorrelation: it is straightforward to implement autocorrelation-robust tests (e.g., in the case

that multi-step ahead forecasts are analyzed).
• Estimated Parameters: adding “randomness” to the transformation (based on an idea by Durbin

(1961)) can be used to allow for estimated parameters (relevant for in-sample evaluations).

Conclusions
•New tests are order invariant, applicable to high-dimensional problems, and have better power than

existing tests.
• Issue of “cheating” can be very relevant in practice.
• In both applications, existing test results not unambiguous (across permutations).
•Many future applications: DSGE forecasts/electricity demand on connected markets/etc.
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